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FOREWORD 

This document is one of sixteen sections that comprise the final 
report prepared by the Minneapolis-Honeywell Regulator Company for the 
National Aeronautics and Space Administration under contract NASW-563. 
The report is issued in the following sixteen sections to facilitate 
updating as progress warrants: 

flumnary 

Control of Plants Whose Representation Contains Derivatives 
of the Control Variable 

Modes of Finite Response Time Control 

A Sufficient Condition in Optimal Control 

Time Optimal Control of Linear Recurrence Systems 

Time-Optimal Bounded Phase Coordinate Control of Linear 
Rxurrence Systems 

Penalty Functions and Bounded Phase Coordinate Control 

ILnear Programming and Bounded Phase Coordinate Control 

Time Optimal Control with Amplitude and Rate Limited Controls 

A Concise Formulation of a Bounded Phase Coordinate Control 
Problem as a Problem in the Calculus of Variations 

A Note on System Truncation 

State Determination for a Flexible Vehicle Without a Mode 
Shape Requirement 

An Application of the Quadratic Penalty Function 
to the Determination of-a Linear Control for a Flexible Vehicle 

Minimum Disturbance Effects Control of Linear Systems with 
Linear Controllers 

An Alternate Derivation and Interpretation of the Drift-Minimum 
Principle 

A Minimax-Control for a Plant Subjected to a Known bad Disturbance 

Criterion 

Section 1 (1541-TR 1) provides the motivation for the study efforts 
The and objectively discusses the significance of the results obtained. 

results of inconclusive and/or unsuccessful investigations are presented. 
Linear programming is reviewed in detail adequate for sections 6, 6, and 16. 

It is shown in section 2 that the prrely formal procedure for synthe- 
sizing an optimum bang-bang controller for a plant whose representation 
contains derivatives of the control variable yields a correct result. 
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In section 3 it is shown that the problem of controlling rn components 
(1 < m < n),, of the state vector for an n-th order linear constant coefficient 
plant, To zero in finite time can be refornarlated as a problem of controlling 
a single component. 

Section 4 shows PontriagirieMaxinnun Principle is often a sufficient 
condition for optimal control of linear plants. 

Section 5 develops an algorithm for comprting the time optimal control 
functions for plants represented by linear recurrence equations. 
may be to convex target sets defined by quadratic forms. 

Steer-ing 

In section 6 it is shown that linear inequality phase constraints 
can be transformed into similar constraints on the control variables. 
ethods for finding controls are discussed. 

Ekistence of and approximations to optimal bounded phase coordinate 
controls by use of penalty functions are discussed in section 7. 

In section 8 a maximum principle is proven for time-optimal control 
Kith bounded phase constraints. An existence theorem is proven. The 
problem solution is reduced to linear programing. 

A backing-out-of-the-origin procedure for obtaining trajectories for 
time-optimal control Kith amplitude and rate limited control variables is 
presented in section 9. 

Section 10 presents a refomlation of a time-optimal bounded phase 
coordinate problem into a standard calculus of variations problem. 

A mathematical method for assessing the approximation of a system by 
a lower order representation is presented in section 11. 

Section 12 presents a method for determination of the state of a 
flexible vehicle that does not require mode shape information. 

The quadratic penalty function criterion is applied in section 13 to 
develop a linear control l a w  for a flexible rocket booster. 

In section 14 a method for feedback control synthesis for minim load 
disturbance effects is derived. Examples are presented. 

Section 15 shows that a linear fixed gain controller for a linear 
constant coefficient plant may yield a certain type of invariance to 
disturbances. 
the concept of complete controllability. 
obtained as a specific example. 

Conditions for obtaining such invariance are derived using 
The drift minimum condition is 

In section 16 linear programing is used to determine a control function 
that minimizes the effects of a known load disturbance. 
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A MINIMAX CONTROL FOR A PLANT 
SUBJECTED TO A KNOWN LOAD DISTURBANW 

BY H. E. GollwitzerS 

ABSTRACT 

A n  open-loop optimal control problem is considered for 

plants that can be represented by linear recurrence equations. 

It is assumed that the control is bounded and that a known 

disturbance is present. 

sequence that minimizes an error criterion based on a generalized 

distance function. 

Then the problem is to choose a control 

The problem is formulated in a manner such that linear 

programming techniques can be used to give the optimal control 

sequence. 

programming problem are presented. 

Estimates on the size of the resulting linear 

A method is cited for determining an optimal control 

sequence as a result of varying a nominal disturbance provided 

the optimal control is known for the nominal case, 

An example is presented to illustrate the techniques 

tnvolved k ( j r / - f u R  

INTRODUCTION 

A n  open loop optimal control problem is considered f o r  

plants that can be represented by linear recurrence equations 

of the form: 

* Prepared under contract NASw-563 for the NASA * Associate Research Scientist, Minneapolis-Honeywell Reg Co. , 

........................... 

Minneapolis, Minnesota 
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x(r+l) = A ( r )  x ( r )  + B ( r )  u ( r )  + g(r) (1) 

where x(0)  = xo; r = O,l,eoe,~=l; x ( r )  i s  an n-vector; g ( r )  a 

known bounded n-vector; and u ( r )  an m-vector whose components 

a re  bounded i n  absolute value by one. 

bounded matrices w i t h  det(A(r)) # 0. 

A ( r )  and B(r)  a r e  

The object is  t o  choose a control sequence 

s a t i s f y  the constraints  and minimize 

where xi(r ;  u, g)  denotes the i t h  component of a solut ion t o  (1) 

The representation of a solut ion t o  (1) allows the problem 

t o  be solved a s  one of l inear  programming and estimates on the 

s i z e  of the resu l t ing  l i nea r  program are presented, 

A method using l i n e a r  programming techniques i s  ci ted tha t  

gives new optimal controls as a f’unction of changes i n  the 

function g ( r ) . i f  an optimal solution i s  known. 

A solut ion f o r  a par t icular  example i s  presented t o  i l l u s t r a t e  

the techniques involved, 

ANALYSIS 

The statement of the problem is  developed and i s  i n t e r -  

preted as one of l i n e a r  programming. Estimates on the s i ze  of 

the resul t ing l i nea r  program a re  developed 

The var ia t ion of  parameters form of a solut ion t o  (1) i s  

given by 
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where r = 1,2y0.0t and Q ( r )  = A ( r - 1 )  A ( r - 2 )  A ( 0 )  

(reference 1). 

tha t  ixi(r;u,g)i 5 z ,  r = 1,2,ee0, 

optimal sequence tu(.)] t ha t  minimizes C(u) i s  found by 

Let z be a nonnegative sca l a r  variable such 

&., i = l , o o e , n o  Then an 

minimizing z subject t o  

f o r  r = 1,2yee0y 1, i = l , o o e ~ n ,  j = O y l , o o ~ ~ ~ - l ,  k = l , o o o , m o  

T h i s  i s  a consequence of  the manner i n  which the non-negative 

sca l a r  variable z was introduced. 

Since each component for each stage of  (3) defines a 
hyperplane wi th  respect  t o  u i (j-1) where u i (j-1) denotes the  i t h  

component of the m-vector u(J-1),  the problem can be stated as 

an equivalent l i n e a r  programming problem, Since la1 5 b implies 

a I b and a ?-b, the problem can be stated as the l i n e a r  programming 

problem: minimize z subject t o  

. .  

f o r  r = l,2yoee,,l, j = O y l , 2 y ~ ~ ~ , ~ ~ - l y  k = l , o o o ~ m ,  i = l y o o e , n  

where xi(r;uyg) i s  given by ( 3 ) .  T h i s  problem can now be solved 
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by standard techniques i n  l inear  programming (reference 2). 

ESTIMATES ON TIE SIZE OF THE LINEAR PROGRAM 

Although the l i nea r  programming problem (5) can be solved 

by standard methods i t  i s  not i n  a standard form so that  these 

methods can be d i r ec t ly  applied. Let A be a pxq matrix, y a 

q-vector, c a q-vector.and b a p-vector. A canonical m a x i m u m  

o r  minimum l inea r  programming problem i s  that of f inding 

yi 1 0, i = l J o e o p  t h a t  maximize o r  minimize cy subject t o  

A y = b  

where cy denotes the inner  product of c and y o  

In  order that  standard methods such as the simplex method 

can be used i n  solving a l inear  programming problem, the problem 

must be reduced t o  an equivalent canonical problem. The problem 

(5) can be reduced t o  an equivalent canonical problem i n  various 

ways. New non-negative variables can be introduced i n  the 

214 (m+n) inequal i t ies  of  (5) so that  equal i ty  always holds and 

each of the u (3)  can be represented as the difference of two 

non-negative var iables  (reference 2), If t h i s  i s  done the 

problem w i l l  be i n  a canonical form and a technique such as 

the  simplex methods can be d i rec t ly  applied. I n  the equivalent 

canonical problem of (5) l e t  N1 be the number of equations and 

N2 be the number of non-negative var iables .  Then depending on 

the spec i f ic  problem 

k 
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- < N~ I 2-11 (n+m) 

where 1 ,  n, m a re  defined i n  (1). 

A PERTURBATION METHOD 

A method i s  c i ted  tha t  allows one t o  calculate  a new 

optimal control as a function of specified var ia t ions i n  the 

function g ( r )  of (1) i f  an optimal solut ion using g ( r )  i s  known. 

As s ta ted before the problem (5) must be reduced t o  t h e  

equivalent canonical l i nea r  programming problem of minimizing cy 

subject t o  

Ay = b yi >, 0, i = l , n . . r p  

before solut ion methods can be applied. A d i r e c t  examination 

of (5) w i l l  show that  g ( r )  w i l l  be found i n  the vector b of (8) 

There are  methods of determining changes i n  the optimal solut ion 

of (8) i f  the components of b are  allowed t o  vary i n  a prescribed 

manner from a nominal choice, These methods go under the 

t i t l e s  of s ens i t i v i ty  analysis and parametric l i nea r  programming 

(reference 3) .  

l e s s  work involved i n  using these methods than t o  calculate  a 

new optimal control f o r  each choice of g ( r ) .  

These methods are advantageous because there i s  

A SAMPLE PROBLEM 

The system of recurrence equations considered is  the one 

associated with the second order d i f f e r e n t i a l  equation 



-6 - 

* A  and x = x2 the system of recurrence equations in ._- .> - A 

vector notation is 
*- A *"- = x1 

with X ( 0 )  = A [ x20] xlo and r = O,lJo.. 

T is a parameter which is analogous to a sampling interval if 

t is a time parameter. 

(reference 1) 

The solution to (10) is given by 

(11) 

The recurrence equation leads to the following problem: given 

x ( ~ k 1 )  = A ( r ) x ( r )  f b[u(r)+g(r)], r = 1,2,e00,~--1,x(0) = 0; 

Ilu(r) I I 1, g(r) specified r = O,1, 

A(r) = [,' :] and b =[ f] then find u ( j ) ,  j = O,l,ooo,~-l 

satisfying (12) that minimize C(u) where 

(12) 
o I  Q-1, where 

and xi(r;u,g) denotes the ith component of a solution to (12). 
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Three cases w i l l  be considered and each w i l l  i n  e f f ec t  be 

t 5 3.  a d i f fe ren t  representation of ( 9 )  over the in te rva l  0 

The di.::tu:a'oxxf? ^fvnctlon 5s taken t o  have the  same pro f i l e  i n  

time f o r  each case considered. 

THE FIRST APPROXIMATION 

Let  T = I, ,(= 3 and le t  g( j )  be specified as follows; 

g ( 0 )  = 2, g(l) = -2, g ( 2 )  = 2. Then from (11) 

Xl(l) = 1 u(0) + 1 

x2(1) = u(0) + 2 
x1(2) = $ u(0) + 2 1 u(1) + 2 

x 2 ( 2 )  = u(0) + u(1) 

x2(3) = u(0)  + u(1)  + u(2) + 2 
5 3 1 Xli3) = 2 U ( 0 )  3 U(1) i- 2 U ( 2 )  + 3 

The optimum sequence, according t o  the methods developed, 

i s  found by minimizing z ,  z 0 subject t o  



> + 1 . = - z  

+ 2 1 z  

+ 2 - z  > 

3 u(0)  + 5 u(1) + 2 5 z  

3 1 
2 - u(0 )  + 5 u(1) > + 2 - - z  

3 u(0) + 2 3 u(1) + 3 u(2) + 3 2 2 

u(0) + u(1) + u(2)  + 2 5 z 

u(0) + u(1) + u(2) + 2 L -2 

This problem is one of linear programming and can be solved 

by standard techniques. 

along with x (r), x (r) and g ( r )  is illustrated in F i g .  1. 

A n  optimum sequence of u(j), j = 0,1,2 
1 2 



'$KE SECOND APPRQXIMATIQN 

and 4!= 6. 1 Let T = The r e s u l t s  f o r  t h i s  case a re  found 

s imi la r i ly  and are  i l l u s t r a t ed  i n  Figure 2 .  

THE WIRD APPROXIMATION 

Let  T = and A? = g o  The r e s u l t s  f o r  t h i s  case are found 7 
s imi la r i ly  and are i l l u s t r a t ed  i n  Figure 3 e  

GOMCLUSIOMS 

A n  open-loop optimal control problem %or plants that  can 

be represented by l i nea r  recurrence equations i s  solved using 

l i nea r  programming techniques, The example illustrates the 

techniques used, The resul t ing l i nea r  programming problem ge ts  

very large if the system i s  o f  high order and f f  a large number 

of stages are  considered, This might ultimately r e s t r i c t  the 

use 

1, 

2. 

3 .  

of d i g i t a l  computers i n  obtaining a solution. 
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